- BASCULA GRANATARIA
La balanza granataria es una báscula de laboratorio usada para conocer la masa de los objetos, un instrumento necesario para todo tipo de experimentos relacionados con la química y que requieran de cierta precisión al momento de conocer la masa de algún elemento.
Normalmente las balanzas granatarias tienen una capacidad para medir entre 2 y 2,5 kg con una precisión de hasta 0.1 o 0.01 g. Por otro lado debemos recalcar que algunas basculas granatarias pueden tener otras capacidades de medida que pueden llegar a los 100 o 200 g con una precisión de hasta 0.001 g.
- BASCULA ANALÍTICA
Una balanza analítica es una clase de balanza de laboratorio diseñada para medir pequeñas masas, en un principio de un rango menor del miligramo (y que hoy día, las digitales, llegan hasta la diezmilésima de gramo: (0,0001 g o 0,1 mg). Los platillos de medición de una balanza analítica están dentro de una caja transparente provista de puertas para que no se acumule el polvo y para evitar que cualquier corriente de aire en la habitación afecte al funcionamiento de la balanza. (A este recinto a veces se le llama protector de corriente, draft shield). El uso de un cierre de seguridad con ventilación equilibrada, con perfiles aerodinámicos acrílicos diseñados exclusivamente a tal fin, permite en el interior un flujo de aire continuo sin turbulencias que evita las fluctuaciones de la balanza y que se puedan medida de masas por debajo de 1 μg sin fluctuaciones ni pérdidas de producto. Además, la muestra debe estar a temperatura ambiente para evitar que la convección natural forme corrientes de aire dentro de la caja que puedan causar un error en la lectura.
- EL ESPECTROFOTOMETRO
Uno de los instrumentos principales del laboratorio de biología celular es el espectrofotómetro. Este instrumento tiene la capacidad de proyectar un haz de luz monocromática (de un largo de onda particular) a través de una muestra y medir la cantidad de luz que es absorbida por dicha muestra. Esto le permite al fisiólogo realizar dos funciones:
1. Nos da información sobre la naturaleza de la sustancia en la muestra. Esto podemos lograrlo midiendo la absorbancia (Abs) a distintos largos de onda (l) y graficar estos valores en función del largo de onda, formando un espectrograma. Como cada sustancia tiene unas propiedades espectrales únicas, distintas sustancias producen distintos espectrogramas. Esto se debe a que cada sustancia tiene un arreglo de átomos tridimensional particular que hace que cada sustancia tenga características únicas. Al ser expuestos a la luz del especrofotómetro, algunos electrones de los átomos que forman las moléculas absorben energía entrando a un estado alterado. Al recuperar su estado original, la energía absorbida es emitida en forma de fotones. Esa emisión de fotones es distinta para cada sustancia, generando un patron particular, que varía con el largo de onda usado. Dependiendo del largo de onda, será la cantidad de energía absorbida por una sustancia, lo que logra generar un espectro particular al graficar Abs vs l
2. Nos dice cuanta cantidad de la sustancia que nos interesa está presente en la muestra. La concentración es proporcional a la absorbancia, según la Ley Beer-Lambert: a mayor cantidad de moléculas presentes en la muestra, mayor será la cantidad de energía absorbida por sus electrones.
Abs = K C L
Abs: absorbancia
K: coeficiente de extinción molar
C: concentración
L: distancia que viaja la luz a traves de la muestra. (normalmente es de 1 cm)
- PIPETAS Y PIPETEADORES
Usamos las pipetas para medir volúmenes de líquidos de forma más precisa que con una probeta. Y son más versátiles, sobre todo al manejar volúmenes pequeños.
Las pipetas de bulbo son útiles para medir volúmenes que no requieren de mucha presición. Antes se usaban pipetas "Pasteur" de cristal a las que se les aditaba un bulbo de goma que se usaba para succionar el líquido. Ahora vienen en plástico desechable de una sola pieza y se consiguen con o sin calibración.
Las pipetas volumétricas vienen en distintos tamaños, desde 1 ml hasta 200 ml, y con distintas formas, de acuerdo al uso que se les dé. También vienen en distintos materiales como borosilicato y plástico, desechables o reusables, estériles o sin esterilizar. Algunas pueden ser esterilizadas en horno o autoclave. Para llenarlas se pueden usar bulbos de caucho, bombas manuales o eléctricas, o equipos de llenado. Las bombas eléctricas y los equipos de llenado son muy útiles si se está trabajando con múltiples muestras, pues minimizan la fatiga del técnico.
- CENTRIFUGADO
Son muy útiles para precipitar células y moléculas. Vienen en distintos tamaños y con distintas capacidades en el manejo de muestras. Este aparato somete la muestra a fuerzas de aceleración que obligan a las moléculas a concentrarse en el fondo del envase utilizado, separándolas del medio en que se encuentran. Incluso, bajo ciertos métodos se puede generar un gradiente de concentraciones dentro del mismo tubo, separando distintas moléculas a distintos niveles o fases dentro del tubo. Con ayuda de jeringas, se puede perforar la pared del tubo y extraer del mismo sólo aquella fase donde se encuentren las moléculas de interés.
Entre las centrífugas que usaremos durante el semestre están la centrífuga refrigerada, que nos va a permitir separar células de los medios de cultivo. El rotor de esta centrifuga puede sostener tubos de 50 ml, pero puede ser intercambiado por rotores que sostienen botellas de cultivo.
La microcentrífuga es una versión más pequeña de la descrita anteriormente. Es compacta, se coloca sobre la mesa y procesa muestras de hasta 2 ml. Es muy útil para precipitar ADN y otras sustancias que se trabajan en volúmenes pequeños.
Comentarios
Publicar un comentario